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Randall-Sundrum scenario, higher derivatives, and stability
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We demonstrate the classical stability of the weak or Planck hierarchy within the Randall-Sundrum scenario,
incorporating the Goldberger-Wise, mechanism and higher-derivative interactions in a systematic perturbative
expansion. Such higher-derivative interactions are expected if the RS model is the low-energy description of
some more fundamental theory. Generically, higher derivatives lead to ill-defined singularities in the vicinity of
effective field theory branes. These are carefully treated by the methods of classical renormalization.
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[. INTRODUCTION study higher derivatives. While the Goldberger-Wises an
obvious small parameter of the scenario, we cannot pertur-
Theories with extra dimensions provide new ways of ex-batively expand in it since the hierarchy is set &y,
plaining the weak-Planck hierarchy. The original proposalwhich vanishes to all orders i Instead, we choose both the
for doing so appeared in Rfl]. An alternative proposal is bulk curvature and the brane tadpole couplings which give
the Randall-SundruniRSY) scenario[2], where the hierar- the Goldberger-Wise scalar a non-trivial profile in the extra
chy is set by a relative warp factc, ™'e, between a “vis-  dimension to provide our formal expansion parametefin
ible” brane, to which the standard model is confined, and agec. |1, we re-derive the Goldberger-Wise mechanism in the
“hidden” brane where 4D gravity is highly localized by the gpsence of higher derivatives. We note that there is an el-
RS2 mechanisni3]. Here, k is a fundamental scale deter- gqant  exactly soluble version of the Goldberger-Wise
mmqo_l by_ the SD cosmological constant andis the COM- mechanisn{9], but our perturbative treatment will be more
pactification radius. The Goldberger-Wise mechanisth convenient when higher-derivative terms are added. A dis-

g:c;(vrldfso?ls/n;np:)e ?ﬂ?ron dalfléirr?l rget?ﬂlsk Os]::ztlgkrjl:‘liéllggvxtlﬂﬁ rsag'uéussion of the Goldberger-Wise mechanism related to ours is
¢ €), by . g . Ref.[10]. In Sec. lll, we discuss how higher-derivative terms
mass-squared of orderin fundamental units. The large ob- ) : .

. et T are constrained by symmetries. In Sec. IV we discuss the
served weak/Planck hierarchsy, “™'c~10" >, is then gener- apparent incompatibility of the derivative expansion. nor-
ated from a modest fundamental hierarcéy, 1/10. PP | patibiiity . vallve exp ' -

mally valid at long distances, with the presence of “thin” or

Since the RS1 field theory, including general relativity, is ; : . . .,
quantum-mechanically non-renormalizable, the model musf-function branes. We show how the ill-defined singularities

be considered to be an effective description of a more funthat arise in the equations of motion can be eliminated by
damental theory. Referencks] have discussed string theory Classical renormalization. In Sec. V we demonstrate the sta-
embeddings of the RS1 mechanism. In any such embeddinﬁ!“ty of the RS and Goldberger-Wise mechanisms when
higher-deriva‘[ive interactions a(’ corrections in String igher-derivative perturbations are included. The central
theory are expected to appear in the effective field theorytéchnical concern is that terms in our perturbative expansion
after integrating out very massive physics. It is, thereforefake the form\"f,(e) and it is important for a controlled
important to demonstrate that RS1 and the Goldberger-Wisexpansion that the small paramekeis not overwhelmed by
mechanism are stable under the addition of such highempossible large terms ify,, such ae* or 1/e™. This is care-
derivative terms. In this paper, we will show that this is fully checked. Section VI provides our conclusions.

indeed the case within the systematic framework of classical

effective field theory.

While short-distance quantum effects can be parametrized Il. THE GOLDBERGER-WISE MECHANISM
and studied within a local derivative expansion, it is also IN PERTURBATION THEORY
important to demonstrate stability in the presence of genuine,
long-distance quantum effects. These can also be studied A. The model
within effective field theory. Referencg8] have examined RS1 has a single extra dimension which is an interval,
such effects at one loop. We hope to give a more completgeglized as an orbifoldS'/Z,. We will begin by using a
treatment of quantum effects in future work. conventional angular coordinate; m< =<1, for the S,

Recently, a dual picture of the RS scenario has been dgyhere the orbifold symmetry acts bf— — . We will al-
veloped[7], based on the AS/CFT correspondefi8k in  ays describe fields within the fundamental domais @
which the extra-dimensional dynamics is replaced by a<r Their extension to general is then determined by the
strongly coupled conformal field theory. While this duality is orpjifold symmetry and periodicity o8?.

compelling and powerful, we will not make use of it in this  The Goldberger-Wise mechanism will first be imple-

paper as some aspects remain unproven. _ mented within a theory given by
Our strategy is to first set up a systematic perturbative
expansion for the classical effective field theory in which to S=Spuikt SpisT Shid s (2.2)
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where

™ 1 1
Sbulk:M:;f d4xf_ d(b\/6< — ZR+§(DX)2

1
+3k2—§ek2X2) (2.2
1
SviS:_Mskf d4X gv(pv+)\vx+ EMU)(Z)
(2.3
3 4 1 2
Shig=—M3k [ d*x\gp| pnt Anx+ 2 MhX" ),
(2.9
with
9,,(X)=G,,(X,¢=m)
9h,(X)=G,,(x,$=0). (2.5

Note that we have chosen a normalization such thas
dimensionless. We assume that there are no extremely lar

do take

k<M

|)\U,h|<6<|pl),h|~lu’l/,h~1' (26)

We will restrict our attention to classical solutions which
admit a four-dimensional Poincaievariance. Such configu-
rations satisfy the ansatz

ds?=e*(9)y , dxtdx’—rid¢?

X=x(¢), (2.7

wherer . is the(constant in this ansatZradius.” In solving
the equations of motion it is convenient to work with a re-
scaled dimensionless extra-dimensional coordinate,

y=Kkr.¢, (2.9

so that the infinitesimal distance in the extra dimension i
dy/k. The Poincare ansatz then reads

ds?=e*A0y dx*dx’—dy?/k?

X=x(Y). (2.9

The equations of motion subject to this ansatz are

X" HAA X" —ex=(N,+ p,x) (Y —Ye) + (Apt mnx) ?SY)O)
1

A”+2 2= +\ +1 218
3()()— 3| PoTAX T S 1uX (Y—Ye)

2 1 )
3 Ph+)\hX+§,U«hX oly) (211
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3 (2.12

1
(A)?=1-gex’+ 5 (x)?,

where

(2.13

The brane-localized scalar tadpoles provide us with our
formal small expansion parameteks,,~O(\). We expand
our solution as a perturbation seriesNn

yc=Kkrqm.

A= A,
n

xX= ; Xn (2.14
where the subscriph denotes the term of ordex" in the
series. Notice that at ordar® we havey=0 and the(trun-
cated AdS; gravity solution obtained in RSB,= —vy, with
r. arbitrary. Thus, in fluctuations away from 4D Poincare
invariancer . becomes a “radion” modulus at zeroth order.

. X ; YFe will demonstrate the Goldberger-Wise mechanism for
hierarchies among the couplings of the model. However, wey

abilizing the radius in higher orders of perturbation theory.
The strategy for solving the equations of motion is as
follows. We solve forA’ in terms ofy using Eq.(2.12),

1 1 1/2
Al=— 1—55X2+ g(X')Z : (2.15

and eliminateA’ from Eq. (2.10 to obtain an equation
purely for y,

: \/ 1
X' —4x'\/1-

6

1
ex’+ 5 (x')*~ ex

=Nyt 1y x) 6y —Ye) + (At nx) 8(Y).
(2.1
We will solve Eq.(2.16) to any desired order in. We then

integrate Eq(2.195 to solve forA(y), subject to the canoni-
cal gauge choicé&\(0)=0. Equation(2.11) will then be au-

S’tomatically solved away from the branes as a consequence of

5D general covarianceFinally, we satisfy the two brane
junction conditions of Eq(2.11) by fine-tuning the hidden
brane tension parametgy, (equivalent to fine-tuning the 4D
cosmological constant to zercand adjusting the compacti-
fication radiusr. (or equivalently,y.) to its stable vacuum
value.

B. Perturbation theory

Here, we will show self-consistently that the solution of
the equations of motion satisfies

10ne can easily check that up #efunction terms, Eqs2.10 and
(2.12 imply Eq. (2.12).
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Yo~ O(1le) In the expressions for the coefficients we have neglected sub-
leading powers ofe“+Yc, since we will demonstrate Eq.
A'(y)=—1, (217 (2.17.

At first order in\ the scalar field does not stabilize the
so that the weak-Planck hierarchy determined by the RSjadion becausé receives no correction at this order. There
mechanism is set by~ “*9). Therefore, while we neeeto  are still two fine tunings needed to satisfy the equations of
be somewhat small, we cannot work perturbativelyifAs  motion as in the original version of RS1 without stabiliza-
stated above we will be working strictly perturbativelyNt)  tion. It is only at second order, where the first order scalar
However, we will simplify our analysis by dropping sublead- profile back reacts on the metric, that the compactification
ing terms ine” ) Note that whileX is formally small,  radius is fixed. This back reaction was also discussed in Ref.
combinations such asO(1/e™) or \O(e* ") may be large [10]. At second ordely,=0 andA} is given by Eq.(2.12
whene<1. Itis, therefore, crucial that such combinations dOexpanded to second order )p The junction conditions of
not appear in the perturbative series in order for the perturgq. (2.11) at this order read
bative expansion to be under control. We show that this dan-
ger does not eventuate by a careful analysis.

1+ ! (0)? ! '(0)2)
- T5€X1 — 19X1
1. Stabilization at second order -2 12

1 1
Since y vanishes at zeroth order, we can perturbatively =— §(ph+ Anx1(0)+ EMth(0)2> (2.29
expand the square-root in E@.16). At first order,

X1—4x1—€x1=(N,+ 1y x1) S(Y—=Ye) + (An+ mpx1) 8(Y).

1 2 1 ’ 2
-1+ 1_26X1(yc) - 1_2X1(yc)

(2.18
1 1 )
With orbifold boundary conditions the solution is =3\ PothoxaYo) + Zmoxa(ye)|. (2.2
x1=Ce2+0 Y+ c et Y, (2.19 _ _ o
Note that parametrically i\, the only way the visible
with junction condition can be solved is if
. U Nn(2A -+ p,)et-Ye 2.20 8p,=3+p,~O(\?). (2.26
V(20 ) (2A0+ ) (2A - — up) '
Such a condition will not reappear at higher ordersiin
_ Ah Once we grant thap, is somewhere in this)(\?)-sized
R FINNE (22D \indow about—3, the visible junction condition can be sat-
isfied, not by fine tuning of couplings, but by solving for the
and where stable vacuum value of the dynamical radius,
A.=2*4+e. (2.22 In(3)
C: A ’ (227}
Note that for smalle, -
A, ~4, A ~—¢€l4. (2.23  where

AL (28— ) (28— 2— )\,
(A, —A @A A+, (2+ )i

wh—zA_><Mv+2A+>\/[25p,,(4A_A++MU<2+M,,>)+ 1-A A, +5 xi}

- (A —A)(BA_A+ 1, (2+ py))Np : (2.28

The sign will depend on the actual value of the parameterin \. For a large range of the parameters, this mass-squared
with the requirement thay, is real and positive. It follows is positive. For example, if, , dominate overA. in Eq.

that in fluctuations away from 4D Poincamvariance, the (2.16), then in this limit the computation of the radion effec-
associated radion has acquired a mass-squared at this ordime potential at second order is precisely the one performed
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by Goldberger and Wise, with the identification of thejr,, n=n;+n,+ng+n,
with our —\, ,/u, . A positive mass-squared results
[4,11,10.
The hidden junction condition at=0 gives us a fine- |s|,[t|=<n. (2.39

tuning condition forpy,

Let us discuss the significance of this claim. First, it shows
QA_(—2+A_A ) +up\? that the perturbative expansion is well-behaved. Note that
ph=3+ A2 —28) . (229  thisisa priori not guaranteed. For example, the formal small
al B parameten could be overwhelmed by a factor et or a
high enough power of & However, it is straightforward to

tuning the effective four-dimensional cosmological constant_(1/A )~ ©(1/e), powers ofy,y., and 1A _ are accom-

to zero in order to permit solutions with 4D Poincangari- panied by powers of the parametrically smaller While
ance. We must perform such a fine-tuning order by order ithositive powers o&*+Y>1 appear, they are compensated by
A powers ofe”“+Ye. While arbitrary powers o&*-Y can ap-

Lgt us now check thgt our basic clairf’s17) are satisfied pear, since we will show Eq2.17) self-consistentlyg® Y
at this order. For generic values of the couplings, ~0O(1). Secondly, Eq(2.17) also follows since it is clear
from Eq. (2.33 that y is dominated byy, for all y. There-
In2~0O(1), (2.30 fore, the second order determination we madeA6rdomi-
nates, and leads to a stable valug/ phear that of Eq(2.27).
The hidden brane junction condition also receives subleading
corrections which can be satisfied by fine-tunggorder by
rder in\. This is the higher-orders incarnation of the four-
imensional cosmological constant fine-tuning problem of
ensuring a 4D Poincari@variant vacuum solution.
2. Subdominance of higher orders We will now prove our clain(2.33 for x, by induction in

. i . n. First we note that the claim is true far=1 based on our
At higher ordem=2, after expanding the square-root in expjicit solution. For a general perturbative orderwe as-

so by Eq.(2.23, y.~O(1/e). Given the explicit form fory,

it is straightforward to see that the resultidg satisfies,
A’~—1. We will show that these successes are maintaine
at higher order in\.

Eq. (2.16, we must solve the following equation fqr sume that the claim is true for all lower orders. Then clearly
e , J,, constructed from the lower order solution fpralso has
Xn_4Xn_eXn_MvXng(y_yc)_:U'thé(Y):Jn(r ) ﬂ:e form
2.3

whereJ,, has the form
In=20 Cirs NHNY)"2(\Ye) BN A )M A+ (VYO

= el v -y ! ey
=2 Arsi€ Xiy  XigXipe 1" Xigiryia X g4 -Yelh-Ye, (2.39

(2.32
where the constant coefficients, are also order one or

Here, the expansion coefficients,s i, are numbers of order Smaller. Given this source term we can solve E431),
one completely determined by expanding the square-root in

Eqg. (2.16, andr +s=1. Note thatJ, is determined from Ve

lower order solutions of in perturbation theory. This allows Xn= f G(y,y")I,(y")dy’, (2.36
us to treat, as a known source in the" order equation of 0

motion for y. Thus we can solve E@2.31) iteratively for the

Xn

X8 .

"+i2(s+r)+1' n-

. whereG is the Green function satisfying
Our central claim is that to any order in perturbation
theory y has the form

d? d
{——4—— €= 1y 8(Y—Ye) —undly) (G(Y,Y")

Xn=2 b s A"HNY)"2(NY ) (N A )N A0V dy? - dy
X 6% Vetd Ve (2.33 =46(y=-y'), (2.37
where the constant coefficientsare order one or smaller subject to orbifold boundary conditions.
(they can contain positive but not negative powerg)efand The detailed form of the Green function is straightfor-
n;,r,s,t are integers such that wardly worked out. However, in order to complete our in-
duction we do not require the full details, but only the gen-
n,=1, r,n,,n3,n,=0 eral form,
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(O(l)e‘A+y/ + (f)(1)eA7(yc—y')—A+yc)eA+y+ (0(1)e—A+y’ + O(l)eL(yc—y')—A+yc)eAfy' o<y<y’,
(0(1)eA—(yc_yl)_A+yc—|— @(1)eAfyc—A+(y’ *Yo))eh+Y 4 (@(1)e—Afy’ + @(1)e—A+y’)eAfy' y' <y<ye.
(2.38

G(y.y")=

The proof thaty,, satisfies the claim of Eq2.33 then fol-  without a derivative acting on [tr>1 in Eq.(2.32]. Other-
lows by inspection of all the possible terms that can arisewise, in terms where the integral2.39), (2.40 produce an
from Eq. (2.3 given Egs.(2.35 and (2.38. The basic in- extra power ofy,y. or 1/A_, the derivatives iny’ always
tegrals involved in evaluating E@2.36) are of the form bring down a power oA _~O(¢) or eliminate a power of’
so that in facty,, does satisfy the claim of the induction. But
Yo y2m+1_yT+l for terms inJ,, with at least one non-derivative power gf
f dy'y'M=—"—"———, (2.39  we see in Eq(2.32 that there are explicit powers efaris-
Y1 m+1 ing in the expansion2.32. These compensate the single
power of of O(1/e) that can be generated ig,, so the
or induction claim still goes through.

dm (eAyz—eAyl IIl. SYMMETRIES OF INTERACTIONS

fyzdy’y’meAyE— ) (2.40
y1 da™ A Our task now is to specify which higher-derivative inter-

) o , . . actions are allowed in generalizing RS1 and the Goldberger-
wherem is a non-negative integed is some linear combi-  \yise mechanism, in particular how they are constrained by
nation of A. with integer coefficients, ang,=0y; Y  symmetries. Since the spacetime manifold is topologically
=VY,Y.. Itis _stralghtforwa_ro_l buft a little ted|0L_Js to then qheck R*x SYZ,, the relevant symmetries are 5D general coordi-
that all possible terms arising in E(®.36 do indeed satisfy 416 jnvariance and the, parity symmetry. The coordinate-
the claim of Eq.(2.33. invariant or geometric statement of tile symmetry is as
follows. We first start with the manifol®*x St and consider
two “3-branes” which divide theS! into two disjoint re-

We conclude this reworking of the Goldberger-Wise gions. We choose geometries and scalar fieldsR8x St
mechanism by discussing the relationship betweeande.  such that the two regions are reflection symmetric. We now
Thus far, we have considered our formal perturbative ex- wish to find a convenient description of all interactions
pansion parameter, to be formally smaller taThe reason  which respect this.
for doing this is because of terms in E§.33 with non-zero It is useful to start with a formalism which respects full
n,,n3 or n,, all of which would signify effects of order 5D general coordinate invariance &fxSt, even though
(N e)". The presence of such terms threatens to invalidatéhis necessarily involves coordinate systems which do not
perturbation theory if we alloweN> e. However, we can in  respect theZ,-symmetry of the invariant geometrgiHow-
fact prove a stronger result, that all such terms in 33, ever, see Ref.12] for an alternative symmetry implementa-
are in fact accompanied by a suppression factor of ordetion.) The two fixed-point braneg'hidden” and “visible” )
€273 50 that we can take take> e (though formally  will be coordinatized a¥}4(x),YM.(x), wherex are param-
small compared to unily This relationship is indeed implicit eterizations of the 3-branes. Using these brane fields, a 5D
in the original analysis of Goldberger and Wise. We have nometric, G,,\(X), and 5D Goldberger-Wise scalg(X), we
emphasized this fact until now both for simplicity and be-can form fully 5D general coordinate-invariant bulk and
cause the suppression factor is not generally true when Werane actions oRR*x St, as in Ref[13].
study higher derivative perturbations. We will study the spe- Once a generally coordinate invariant action has been
cial circumstances under which higher-derivative perturbachosen in this way, we can “gauge-fix” by choosing our 5D
tions do not require\/e to be small in Sec. V. coordinatesXM, to consist ofx* and an extra-dimensional

The stronger result, that there are accompanying factorgngle, — < ¢<r, such that
of ordere™2* "3 "4 js again proven by induction am noting
first that it trivially holds forn=1. For a largen, we assume
it holds for lower orders. Thereford,, shares the same prop-
erty since it is made from products @bwer-ordej y and
x'. But x, determined by Eq(2.36) can generat¢at mos} Yi,=0
one new power oY,y or 1/A _ relative toJ,: a new power
of y ory, can arise as in Eq2.39 or Eq.(2.40, or one new
power of 1A _ can arise as in Eq2.40 in caseA=A_.
One can checksomewhat tedious)ythat such cases can
only arise from terms id,, involving at least one power gf  and where the symmetry of the geometry anés manifest,

3. The case oA>¢€

Yhia(X) =Y is(x)=x#

y¢ =1, (3.1

vis™
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GL(X, ) =G, (X,~ ¢) High derivatives applied to such-functions produce messy
and ill-defined equations of motion. We will show how such
Gup(X,)=—G,4(X,— ) problems can be treated by a combination of field redefini-
tions and classical brane renormalization. See Héf for a
Gyp(X, ) =G yy(X,— &) recent discussion of brane renormalization focusing on co-
dimension 2, and Refd.15] for earlier work on classical
X(X, )= x(X,— ). (3.2 renormalization.
Our procedure for writing actions dR*x S'/Z,, is there- o _
fore to (a) write a general 5D coordinate invariant action for A. The formal derivative expansion
bulk and brane fields oR*x S as detailed in Ref.13], (b) To keep only the essential considerations in focus we will

gauge-fix the action according to Ed8.1) and(3.2), using  not consider gravity here. We will limit ourselves to a single
the Z,-symmetry of the allowed configurations. Once this isscalar field,y, living on an extra-dimension&/Z, of fixed
done the brane-field¥ (), YM(x), no longer explicitly  radiusr, (and the usual four dimensiondhe same consid-
appear. Finally(c) one must check that all terms in the ac- erations apply in the presence of gravity or non-trivial warp
tion are compatible with orbifolding, namely they are invari- factor. As before we takeg to be dimensionless and even

ant under under the orbifold parity. The general Lagrangian then has
the form
G#V(X7¢)_>GMV(X1_ ¢)
(X)
GLg(X, )= =G 4(X,— @) L=M3* —=(dux)*=V(x)—vi(x) (YY)
Gyp(X, ) =G yy(X, — @)
£ 0 G |, 4.
X(X!(ﬁ)_))((xr_(ﬁ)’ (33) n>o0 M" T

for general metrics and scalar field.

It is straightforward to check that it does not matter
whether one imposes th®,-symmetry and gauge-fixing on
the action or varies the un-gauge-fixed action without impos-
ing theZ,-symmetry, as long as one then imposeszhand
gauge-fixing on the equations of motion. For convenience w
will assume that theZ,-symmetry and gauge-fixing have

i he level of th i implicit in the R ) : . !
gﬁgnégggi?ge?f\}vgeegaepgrst e action, as implicitin the RS ers due to the orbifold parity and 4D Lorentz invariance, so

3
Recall that the central reason we wish to orbifold is that! that the 1M-suppressed term@nce the overalM® is ex-

we wish to take the visible brane to have “negative tension, »cluded are those with more than two derivatives in the bulk

which would normally yield a ghost-like sign for the associ- and those with any deriviatves on a brane. We have not sepa-

atedY*_ kinetic term(Ref.[13]), causing a vacuum instabil- rated out brane and bulk higher-derivative terms although we

vis will do this later.
ity towards violent brane fluctuations. However, such brane . . .
We will study the equations of motion subject to the 4D
fluctuations violate theZ,-symmetry, and therefore are L -
Poincareansatz,y= x(y),

eliminated by orbifolding. It may seem that by formally re-

mtroducngU,S in step(a) of our procedure for generating ,

allowed action terms, we are reintroducing the mstablllty — 3y(K(x) dyx)— K (X)(& V2V () +o! () 8y =)

However this is not so. Th&,-symmetry renders’? s Y 2 Y '

pure gauge, with no physical import, as reflected in the 1 s

gauge fixing of stefgb). => = d. 4.2
S0 M Ox

whereM is the only explicit scale appearing in order to bal-

ance dimensions, ang is now defined as the extra-

dimensional coordinate corresponding to proper distance in

the extra dimension. Brane localized terms are represented

gy multiplying by one ofé(y—vy;), wherey;=0,y,=mr.

L, 4. are arbitrary higher-derivative terms organized in pow-
rs of 1M. Note that derivatives always appear in even num-

IV. HIGHER-DERIVATIVE OPERATORS IN EFFECTIVE

BRANE THEORIES This would appear to be a differential equation of arbitrarily
high order and therefore requiring an arbitrary number of
initial conditions to solve. However, there is a unique solu-
tion which is perturbatively close, in @(M)™ expansion, to
he zeroth order solution,

In any effective field theory we expect there to be higher-,
derivative operators which are remnants of the more funda
mental physics which has been integrated out. Their interpre
tation and treatment is generally well-understood. Howevel1
they pose special problems when they appear in effective
theories involving orbifolds and branes in extra dimensions. '(Xo)

— 2
These stem from their appearance &inction sources in dy(K(x0)dyxo) = ——5—(dyx0)"+V'(x0)
the extra dimension, rather than some structure with a finite )
size (perhaps due to quantum-mechanical or stringy effects +vi(x0)6(y—yi)=0. 4.3
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This zeroth order equation is manifestly a second order dif-
ferential equation subject to orbifold boundary conditions,
which we know has a distinct solution. Of course, in order to
determiney, we may have to approximate as we did for the
Goldberger-Wise mechanism, perturbinghinbut in order to
focus on higher derivative perturbations let us take the zeroth
order solution,y,, as given.

An expansion ind,/M may seem sensible in the bulk
where solutions are smooth but ill-defined in the presence of
the braned-functions. We will show how these ill-defined

PHYSICAL REVIEW D 65 044003

1
- r7yK(XO)(S’y_ ay(&yXO)K,(XO) + EK”(XO)(ayXO)Z
+K'(x0)(dyx0)dy+V"(x0)

+0{(x0) 8(y=yi) [ G(y.y')=d(y—y’). (4.7)

B. The problem

brane singularities can be renormalized away. To get started Such Green functionsG (and alsoyo) will clearly be

and to understand the issues we will proceed bravely angmooth in the bulk, with absolute-value type kinks at the

formally define thed, /M perturbation expansiohWe will
work inductively inn. Let the expansion of in powers of
1/M be written

XIZ Xm-

m

(4.9

Suppose that we can solve E4.2) to order 1M™ (we know
we can do this fom=0). We will then show how to con-
struct a solution up to order W1,

We substitute Eq(4.4) into Eq. (4.2) and focus on the
term precisely of order M™*?,

1
[_é’yK(XO)&y_ﬁy(&yXO)K’(XO)_" EKH(XO)((?yXO)2
+ K" (x0)(dyx0)dy+V"(x0) +v{(X0) (Y =Yi) { Xm+1
(4.5

|m+11

6S
=5—X[|;m xi(y)

where the right-hand side is the functional derivative of the
entireaction, including the higher derivative terms, evaluate
for the field 2, <mx(Y), but keeping precisely the terms o
order IM™*1, Thus, in order to perturbatively improve our

solution by one order in M, that is solve fory,,, 1 in terms

branes. That is, their first derivatives will have step-function
discontinuities on the branes and their second derivatives
will have é-functions on the branes. Let us suppose this
property of the Green function is shared by ,(y) and see
how trouble can arise ig,. 1. First, consider bulk terms that
can appear in &S/5X)[E|smx|(Y')]|m+l- If there are more

than two derivatives acting on the same field, then we will
have derivatives of-functions on the branes which we must
convolute withG, which has absolute-value type kinks. The
result is therefore ill defined. Similarly, if we have a power
greater than one of second derivatives of fields we will have
to integrate products ob-functions which is again ill de-
fined. On the other hand, if there is at most a single field with
two derivatives acting on it, multiplied by any number of
fields with at most first derivatives, then we will only have to
integrate a single-function multiplied by a function with
absolute-value type kinksThis does yield a well-defined
Xm+1, Which is also smooth except for absolute-value type
kinks on the branes. It is rather straightforward to see that the
troublesome higher-derivative bulk terms in the equations of
motion correspond precisely to bulk higher-derivative terms
in the Lagrangian, Eq4.1), with more than one derivative
acting on a fieldunless it can be eliminated by integration
by parts.

Let us now turn to brane terms on the right-hand side of
Eq. (4.6), again assuming thaf <,(y) has only absolute-

gvalue type kinks and considering the effects R, 1(y).
¢ It is clear that if in the Lagrangian, Eq4.2), there

are any derivatives in brane terms, then in
(58/(S)()[2|§rT1)(|(y’)]|m+1 we will have derivatives ofé

of Xi<m,» We on|y need to solve the above linear Secondfunctions Wthh makes Eq46) |”-def|ned again. On the
order equation foly,,; subject to orbifold boundary condi- Other hand if there are no derivatives on the brane terms, they

tions, with a source term determined by the lower order soWill give simple 5-functions to be integrated in Eq4.6),

lution x|<n, . This we can do

|m+1! (46)

5S
xm+1(y)=f dy’G(y,y’)a—X[;m xi(y")

resulting in aym,., with only absolute-value type kinks.
Below, we will show that an arbitrary higher-derivative
Lagrangian, Eq(4.1), can be massaged so that all bulk terms
have at most one, acting on any given field, e.gq(dx)*°,
and all brane terms have @y’s at all. As shown above, this
will result in a well-defined perturbative derivative expan-
sion for solving the equations of motion, with solutions hav-

where G is the Green function determined by orbifold ing at most absolute-value type kinks. The reader may on a

boundary conditions satisfying

3The first derivatives of fields actually have step-function discon-

2This is in the same spirit as setting up the formal Feynman diatinuities, but because of the orbifold symmetries they must always
gram series in quantum field theory, which is also ill-defined untilappear in even powers, yielding a function with only absolute-value

after regularization and renormalization.

type kinks on the branes.
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first reading wish to accept that this can be done, skip the redtinetic term, whereupon (after integrating by paris
of this section, and continue with the stability analysis forit produces precisely the term needed to cancel
higher-derivative bulk terms subject to the above conditionsz‘n‘zm[a,;/(w)M‘”']((91,0)“1. .. ()™ in the Lagrangian,
plus terms of higher tham-th order. Thus one uses this
C. Bulk higher-derivative operators procedure to eliminaté>1 terms to any desired order in

In this section we will show how higher-derivative opera- aIM, when we neglecO(K’).
. 'ghet /€ Op More generally, the field transformation above will, how-
tors in the bulk can be massaged using field redefinitions. Tg

simplify the considerations note that the equations of motion Lo reintroduce terms of various ordersafM, but now

subject to the 4D Poincammsatz,y— x(y). can always be with coefficients of ordek?/M?. But we can once again do
ml y - y . . . 2 2 .
obtained by first imposing the ansatz on the action,(Ed), a fleld_redeflnmon _at _ordek /M*® and work _to any _deswed
: . e . order in 9/M to eliminate N>1 terms. This will in turn
and then functionally differentiating with respect tdy).

; . . 7" . _induce terms of ordek*/M*. In this way, one can eliminate
Doing this we can write the bulk part of the Lagrangian in all N>1 terms to any fixed order k2/M2 andd/M. Finally,

the form we can transform back to a fielgew,
Low=M?| — 2K (00°=V(x) Wnew _ 112
bulk 2 y a—:K (Xnew)v (4'12
Xnew
a; in terms of which
> ,\nﬂ(ﬁ)(ax)”l. L@N™E (48
1
Louk=TrM3{ K d 2_v
where |n|=n;+2n,---+Nny—2>0, and where nowJ butk= M) 5 K(Xnew (9Xnew) ™~ V(Xnew
=d,.
y
As already discussed, the problematic terms are those an(Xnew N
with N>1 To begin, we assign the bulk potential a formal +§n: M2 (IXnew" [ - (4.13

strength V~O(k?)<M? and augment our effective field

theory derivative expansion with an expansiorkiM. We e have thereby removed all the problematic bulk terms
then make a field redefinitionj(¢), to render the kinetic discussed in the previous subsection.

term “canonical,” It can be showr{again, tediouslythat our field redefini-
tion in Poincareansatz,
= | dxK¥qx). 4.9
= | axkin (49 XY= Xneul¥). (414
Then we have a form can be lifted to a fully 5D covariant transformation,

X(X,Y) = XnewX,Y), (4.19

which, however, reduces tp(y) — xnew(Y) UPON imposing
the 4D Poincarensatz. Similarly, when gravity is included
+z aﬁ(‘”)(w)nl. _ _(an)nN], (4.10 the.re are fu_IIy SD generally qovariant field redefinitions
= minl which upon imposing the Poincaemsatz ensure that all
>1 terms(terms with more than ong, acting on a fielglare
where of cours&/ anda,, are redefined too. This particular absent.
field redefinition will simplify stating our procedure, and will
be undone at the end. D. Brane higher-derivative operators
We begin by working to zeroth order kKM (that is, we
can neglectV), but to some non-zero ordem, in J/M.
Working inductively, we assume that by some field redefini-
tions of ¢ all N>1 terms have been eliminated from all
terms of lower tham+th order. We then make the following
field redefinition:

_ 3
Loui=TrcM

1 2
5 (> =V()

It is obvious that the field transformations which we dis-
cussed above to massage the bulk action will induce deriva-
tive terms on the orbifold fixed points. Furthermore, such
derivative terms may already be present anyway. Therefore
after ensuring that all bulk terms satidf<1, we must still
massage away brane terms in the Lagrangian of the form

Lany) _
¢—>¢+|n€,m(—6)'“ ZW(W)“---(&NI,&)”N L cbranezfdya(y—yi)MSk
(4.1 )
anlx
Note that this transformation is only sensible fii>1. L%;o i (Ix)". . (Nx)™ .

To mth order, the only difference this makes to the
Lagrangian arises from substituting into the zeroth order (4.16
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We will show that the important physics containedyimway Let us define
from the branes can be obtained by using effective renormal- _
ized brane Lagrangians without any extra-dimensional de- X(0)=F(x(t),dyx (1))
rivatives, 5
ayx(0,)=G(x(1),d,x(1)). (4.2

— 3
Lett, brane_f dys(y—yi)Mkvi(x). (417 \we can eliminate dependence R(t),d,x(1) in favor of c,

The first step before renormalizing the original Lagrang- ¥(0,)=F(f(c),g(c))=p(c)
ian is to regulate it, say by the replacement,
dyx(0:)=G(f(c),g(c)=q(c). (4.22
8(y=yi)—D(y—yi) T
Therefore, order by order in perturbation theory we can

=Ne Vy-vit)plly-y—-t) _ o . .

Ne € , Ttsy<t eliminate dependence anby invertingp,

0 else, (4.18 ~ g~

dyx(04)=d(p "[x(0)D. (4.23
where -
We will now show thaty is the classical solution corre-
N t dye Y+Dely—1 4.19 sponding to a “renormalized” effectiv_e Lagrangian with the
—t ) ) same bulk terms as before, but with &function brane-

localized potential term(that is without any extra-
This replaces the infinitesimally thin brane by a thick branedimensional derivativgs Recall that by field redefinitions
of thicknesst:1/M <t<r.. Note that the brane profiB(y = we have already ensured that the bulk Lagrangian only de-
—y;) is a smooth functiorithat is, aC* function) of com-  pends ony and its first derivative Lo (x,x’). The full
pact support. effective Lagrangian, including the effective brane potential,

With this regulator in place, clearly our perturbative de-is then given by

rivative expansion is always well-defined despite derivatives ,
on branes, and Ed4.6) will always give smooth solutions. Let1= Loui x:x") + 8(Y)vertx), (4.24
Of course, the results depend on our choice of regulator]vhere
However we will show that away from tHeompact core of

the branes, this regulator-dependence can be completely sub- 2L

sumed into an effective brane Lagrangian, Eq17). ve”(X):J dx 2q(p (x)) b“'k[x,q(pfl(x))]_
For simplicity of exposition we will consider a single or- (ax')?

bifold fixed point onR/Z, rather than the two fixed points of (4.29

S'/z,. The generalization t&'/Z, is entirely straightfor- . .
ward. First, recall that we have shown that at every order inThe reader can straightforwardly check that the equation of

perturbation theory we only solve second order differentiallmOtion tEat foIIovv; from this. effedctive Lagrangrianbisliquiva—
equations. Thus the solutiop(y) in perturbation theory is :x;;ofrgrﬁyefgatg;s;gggtoe ré b;etr?en k))lotl?n;a?y éjondtﬁirg;‘s
completely specified by(0) and d,x(0). Orbifold parity Eq. (4.23 ' ’
setsdyx(0)=0, butx(0) (on R/Z, notSY/Z,) is an unfixed Thus, we are always able to find an effective Lagrangian
number,X(O)jc. In particular by Eolvmg the equations of ¢ fbrm (4.24), which has solutions which agree with
fmuﬁgﬁgﬁsxg%_)((_t) and dyx(t)=—dyx(—t) are both  yh e of 4 general Lagrangian supplemented by a regulator,
' outside the regulated core of the branes. The important phys-
Y(H)=f(c) ics such as the hierarchy are insensitive to the general dis-
agreement inside the thickness of the regulated brane. Note
(4.20 that the effective Lagrangian does not suffer from UV ambi-
guities, and therefore needs no regulator. In that sense it is
“renormalized.”

dyx(t)=g(c).

Let us definex(y), to be the result of integrating the second
order differential equations frorhto a generaly>0, using
x(1),dyx(t) as boundary conditions, but completely neglec
ing brane interactions. Now foy>t, x(y) is in fact the A. Setup of the model

correct solutiony(y), since the neglectedPrane interactions We will now show that the Goldberger-Wise mechanism
vanish in this region. But foy<t, clearly x(y) cannot be can be realized in a very general setting, including higher-
trusted. Nevertheless, as long as the physics of interest ierivative operators. We will take the higher-derivative terms
dominated by bulk field behavior outside the core of theto be Suppressed by appropriate powers ofl lHnd con-
brane, we can usg(y). This will be the case for the solution strained by symmetries according to the discussion of Sec.
to the hierarchy problem, which is determined by the warplll. Furthermore, we will assume that they have already been
factor accumulated over the large bulic$ 1/M). massaged by field redefinitions and brane-renormalization as

t- V. STABILITY AND HIGHER DERIVATIVE OPERATORS
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discussed in the previous section, so that fields appearing in 2 2

bulk interactions have at most one extra-dimensional deriva- A"+ §(X’)2= ~3

tive acting on them, while there are no extra-dimensional

derivatives in brane terms. 2
The action in Einstein frame is X 8(Yy—Ye)— 3

Soulk= M3J’ d4xfird¢\/a

1 2 3
PoT N X5 B +0(x°)

1 2
PhtAnX+ 5 mnx

1 1
V00 =z R+ ZK00 (DY +ou%)ayw44x«zA»

J A O0x AT (5.6)
+M2'ch.d.<GMN1XyMN)) (5.0 AA0X

1 1
(A")2=1— gf)(z"' g(x’)2+fs(x,x’,A’),
a@=—M%fd&ﬁE@4m (5.2 (5.7

where thef; refer to the variation of the bulk higher-

derivative action subject to the special form discussed in Sec.

Shia=—M3k f d*X\Ghigvn(X)- (5.3 IV. Note that the right-hand side of E¢.7) does not contain
terms with delta functions or second derivatives.

o . , Perturbation theory follows along lines similar to Sec. Il.
Here, L, 4. indicates terms containing more than two deriva-\yje first formally expandA and y as in Eq.(2.14 and sub-

tives with dimensionless coefficients of order unity and supgjiyte into the equations of motion. We then solve Eq7)
pressed by powers of &. We can expand the dimensionless ¢, the A’ in terms of theyy,<, and x/,_,, to any desired

functionsV.K,v, , andvy, in powers ofy order. Substituting for thé\, into Eq. (5.5 then yields an
equation involving only they, and x,, which we solve per-
turbatively. Then, by 5D general covariance in the bulk, Eq.
(5.6) is automatically solved, except for the two brane junc-
tion conditions which are solved by fine-tunipg and set-
ting y. to its stable vacuum value.

To see that Eq(5.6) is automatically satisfied up to junc-
tion conditions, note that under infinitesimal general coordi-
nate transformations the bulk action is invariant,

1
V(x)=3- §€X2+ O(x*)

K(x)=1+0(x)

1
v, (X) =Pt Mo+ 5 sox*+O(X)
Sould Gmn+ D 7n+ Dz s x + M x 7m]= Souid Gun X1,

1 (5.9
va(X) = Pnt Anx+ 5 a0y + O(x%). (5.4 S S
for arbitrary infinitesimalz,, . This implies
We will perform perturbation theory in powers kf/M? 1 6Spu| 1 SSpui
<1 and the brane-tadpoles, ,,, as discussed in Sec. II. 2Dy \/——f —\/——5—5 x=0. (59
Higher-derivative terms are automatically suppressed by G MN G X
powers ofk?/M?2 because the bulk potential is dominated byI he Poincal his ai
a 5D cosmological constant of ordst*k?. Formally, this is n the Poincarensatz this gives
seen by the fact that in our dimensionlgssoordinate every
dy is accompanied by. For simplicity, we takek’/M? and J 5Sbu|k) :Aﬁsbulk_fxﬁsbulk (5.10
N, to all be of the order of our formal small parameter, °| 6Gss sGr 27 box '

We continue to take the relations of EG.6) to hold among

Ny.hsPyhoMy,p @NdE. i This shows that Eq(5.6), the G,,, equation of motion, is
We now write the equations of motion with the Poincaresatisfied up to junction conditions, given E@.5), the x

ansatz using again the dimensionless varightkr.¢ as in  equation of motion, and Ed5.7), the Gss equation of mo-

Sec. I, fion.
The equation fory obtained by eliminating\’ from Eq.
"HAA X = ex= (N, F ppx T O(x*) Sy~ Yo) (5.5 using Eq.(5.7) has the form(2.3D, but now with
! * * Fox X y=ye sources following from Eq95.5—(5.7) of the form:
+(\pt pax +O(x?)3(y) o >
Y\ " AN J = Jbulky jbrane_ jmixe ' 51
+HOox" A+ X" x AN n~+n n n (5.11

(5.5  where
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bulk )
R=2 ar s iN"Xiy X XT L Xi O riem,

(5.12
b
Jnranejzz br,s,f)\mXil .. -Xi55i1+~--is+m,n5(y_yj)’
(5.13
and
Jnmixedzz Cr,s,i)\mXil .. 'Xiin,Hl . -Xi,SX;;
X&i 4. igtmtp, n- .19

PHYSICAL REVIEW D 65 044003

C. Subdominance of higher orders

We claim that at any ordey,, has the general forrf2.33),
andA) has the general form

AL=2 i s ANHNY)2(NY ) B(NA )M

X erA-ﬁ-(y*yc)eSA—YetA—yc’ (518)

so that perturbation theory is well-behaved. Therefore, our
second order mechanism above for stabilization of the weak
or Planck hierarchy of ordee™ ®(*)’¢ continues to hold.

We show this claim is true by induction. We have already
discussed the cases for=0,1. Focusing now ory,, and
assuming that Eg2.33 is valid at all orders lower than,
the n'" order source has the form

This last term acts as a brane term as well as a bulk term

becausey” containss-functions at the branes as well as a
smooth bulk behavior. Again, the constant coefficieat®
and ¢ are order one or smaller. The" order solution is
obtained using Eq(2.36 with the same Green function de-
fined by Eq.(2.37).

B. Stabilization at second order

We will show here that hierarchy stabilization satisfying
Eqg. (2.17) is naturally achieved by second orderNn simi-

larly to Sec. Il. Note that at zeroth order our solution is again

the unstabilized RS1 solution. At first ordey is given again
by Eq.(2.19, althoughA; may now be a non-zero constant.
As discussed above, we can solve for &feusing Eq.(5.7)

in terms of thex<, and x,,~,,- Therefore,A; must be a
quadratic polynomial iy, and y; . Summarizing, we have

1 1
— 2 12
Aot ALt A= agt arxyt axit 15 EXTT ToX1 s

(5.19

where ag=—1+O(\), a;,~O(N). The constantsy; are
independent of since theA/, are determined in terms of the
Xxm and y;, locally.

It remains to satisfy the junction conditions for E§.6).
After anO(\?) tuning of p, (not appearing at higher ordgrs
similar to Sec. Il, the above considerations and Eq19
yield a visible junction condition of the form

P,(e2-Ye)=0, (5.16

where P, is a quadratic polynomial with order one coeffi-

cients. For generic values of these coefficients one obtains

solutions,
et-Ye=((1). (5.17

Thus, along with Eq(5.15 we have demonstrated the hier-

In=20 @i s ANNY)2(NY) (N A )NagrA (Yo

e Vel et B b s A"HAY)"2(NYe) SN A )"

X e A +Yegld-Yes(y)

+ 2 Cira AN "2(NY o) BN A )M

X e A+Yeg!dYes(y—y ). (5.19

It is straightforward to check that with this source, the solu-
tion for y,, given by Eq.(2.36) indeed satisfies Eq2.33.
Then, given the form of E(5.7) and the form fory,, of Egs.
(2.33, (5.18 readily follows.

D. The case ofA>e€

A significant difference between the source considered in
this section, Eq(5.11) and that considered in Sec. Il, Eq.
(2.32, is that in the latter every power gf without a de-
rivative was accompanied by an explicit powerGf. Recall
that this ensured that increasing powers df 1/in perturba-
tion theory were accompanied leyfactors. This allowed us
to takeh > € and still have a meaningful perturbative expan-
sion. Without this feature, in this section we are limited to
formally A <e, as we have assumed thus far in this section,
in order to have a good expansion.

However, there is an interesting scenario under which we
would recover a good expansion far>e even for higher-
derivative operators. We first assume(ren-linearly real-
ized global symmetry,

(5.20

If this symmetry were exact, only derivatives pfwould be
permitted in the action. But one does not expect that such
global symmetries are respected by the underlying quantum

X— xtconst.

archy, Eq.(2.17), at this order. The hidden brane junction ———

condition is solved by fine-tuning,,, corresponding to the
fine-tuning of the 4D cosmological constant to zero.

“We thank W. Goldberger for pointing out the usefulness of this
symmetry to us.
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gravity theory. We will assume that in fact such violation is é-function branes or orbifold fixed points, resulting in ill-

controlled by the small parameter, so that non-derivative defined singularities in the classical equations of motion.
powers ofy in the action are accompanied ki, thereby ~ While such singularities can be regulated, the process is
generalizing the explicit appearance ofin Sec. Il. Then, messy and apparently regulator-dependent. However, we
increasing powers of A/_ in perturbation theory are again showed how classical renormalization of the brane action can
accompanied by factors, so that the perturbative expansionbe implemented so as to remove the need for explicit regu-

is under control foi\ > €. lators. This greatly simplifies the discussion of higher-
derivative effects.
VI. CONCLUSIONS It is important to study the stability of the RS1 effective

field theory under quantum effects. Since the effective theory
We demonstrated the stability of the RS mechanism folis not renormalizable we expect quantum divergences of the
generating the weak-Planck hierarchy in the presence dbrm of every possible local operat@subject only to sym-
higher-derivative interactions. We re-worked the GO|dbergel’metrie9_ However, once these divergences are covariantly
Wise radius stabilization mechanism in a systematic perturregulated at the fundamental scale, they must be of the form
bative expansion in parameters of the brane potential. Incoand strength of the higher-derivative interactions already
porating  higher-derivative interactions as  further considered in this paper. As usual in effective field theory,
perturbations, we showed that they did not affect the basigenormalization proceeds order by order in the derivative ex-
mechanism. pansion, using counterterms also of the form of the operators
In our perturbative analysis, radius stabilization isof this paper. Thus, because quantum divergences are local
achieved in the following steps. At zeroth order we found thethey cannot destabilize the RS hierarchy, since our purely
unstabilized RS1 vacuum with a trivial profile for the classical analysis already treats all such local effects. This
Goldberger-Wise scalar. At first order, the scalar respondgaves only the non-local quantum effects which are UV-
non-trivially to the brane-potentials. The back-reaction offinite and therefore well-defined and calculable. In future
this scalar profile on the 5D metrigvarp factoy takes place work, we hope to build on Ref§6] in studying the general
at second order. In particular, the radius acquires a distincktructure of these non-local quantum amplitudes and whether
stable value. This value can naturally be several times théhey affect the basic RS1 mechanism.
fundamental scale of the theory, while the bulk geometry is a
small perturbation of Ad§ so that the RS mechanism for ACKNOWLEDGMENTS
generating the hierarchy operates. We also gave a careful
treatment of all higher orders in perturbation theory, showing We are grateful to Walter Goldberger, Markus Luty,
that our expansion is under good control. Rustem Ospanov, Alexey Petrov and Mark Wise for helpful
The derivative expansion of effective field theory seemaliscussions. A.L. was supported in part by the National Sci-
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