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Randall-Sundrum scenario, higher derivatives, and stability

Adam Lewandowski and Raman Sundrum
Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 212

~Received 4 September 2001; published 9 January 2002!

We demonstrate the classical stability of the weak or Planck hierarchy within the Randall-Sundrum scenario,
incorporating the Goldberger-Wise, mechanism and higher-derivative interactions in a systematic perturbative
expansion. Such higher-derivative interactions are expected if the RS model is the low-energy description of
some more fundamental theory. Generically, higher derivatives lead to ill-defined singularities in the vicinity of
effective field theory branes. These are carefully treated by the methods of classical renormalization.
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I. INTRODUCTION

Theories with extra dimensions provide new ways of e
plaining the weak-Planck hierarchy. The original propo
for doing so appeared in Ref.@1#. An alternative proposal is
the Randall-Sundrum~RS1! scenario@2#, where the hierar-
chy is set by a relative warp factor,e2kpr c, between a ‘‘vis-
ible’’ brane, to which the standard model is confined, an
‘‘hidden’’ brane where 4D gravity is highly localized by th
RS2 mechanism@3#. Here, k is a fundamental scale dete
mined by the 5D cosmological constant andr c is the com-
pactification radius. The Goldberger-Wise mechanism@4#
provides a simple and natural means of stabilizing the rad
at krc;O(1/e), by introducing a bulk scalar field with 5D
mass-squared of ordere in fundamental units. The large ob
served weak/Planck hierarchy,e2kpr c;10215, is then gener-
ated from a modest fundamental hierarchy,e;1/10.

Since the RS1 field theory, including general relativity,
quantum-mechanically non-renormalizable, the model m
be considered to be an effective description of a more f
damental theory. References@5# have discussed string theor
embeddings of the RS1 mechanism. In any such embedd
higher-derivative interactions (a8 corrections in string
theory! are expected to appear in the effective field the
after integrating out very massive physics. It is, therefo
important to demonstrate that RS1 and the Goldberger-W
mechanism are stable under the addition of such hig
derivative terms. In this paper, we will show that this
indeed the case within the systematic framework of class
effective field theory.

While short-distance quantum effects can be parametr
and studied within a local derivative expansion, it is a
important to demonstrate stability in the presence of genu
long-distance quantum effects. These can also be stu
within effective field theory. References@6# have examined
such effects at one loop. We hope to give a more comp
treatment of quantum effects in future work.

Recently, a dual picture of the RS scenario has been
veloped@7#, based on the AdS/CFT correspondence@8#, in
which the extra-dimensional dynamics is replaced by
strongly coupled conformal field theory. While this duality
compelling and powerful, we will not make use of it in th
paper as some aspects remain unproven.

Our strategy is to first set up a systematic perturba
expansion for the classical effective field theory in which
0556-2821/2002/65~4!/044003~12!/$20.00 65 0440
-
l

a

s

st
-

g,

y
,

se
r-

al

d

e,
ed

te

e-

a

e

study higher derivatives. While the Goldberger-Wisee is an
obvious small parameter of the scenario, we cannot per
batively expand in it since the hierarchy is set bye21/e,
which vanishes to all orders ine. Instead, we choose both th
bulk curvature and the brane tadpole couplings which g
the Goldberger-Wise scalar a non-trivial profile in the ex
dimension to provide our formal expansion parameter,l. In
Sec. II, we re-derive the Goldberger-Wise mechanism in
absence of higher derivatives. We note that there is an
egant, exactly soluble version of the Goldberger-W
mechanism@9#, but our perturbative treatment will be mor
convenient when higher-derivative terms are added. A d
cussion of the Goldberger-Wise mechanism related to ou
Ref. @10#. In Sec. III, we discuss how higher-derivative term
are constrained by symmetries. In Sec. IV we discuss
apparent incompatibility of the derivative expansion, n
mally valid at long distances, with the presence of ‘‘thin’’ o
d-function branes. We show how the ill-defined singulariti
that arise in the equations of motion can be eliminated
classical renormalization. In Sec. V we demonstrate the
bility of the RS and Goldberger-Wise mechanisms wh
higher-derivative perturbations are included. The cen
technical concern is that terms in our perturbative expans
take the formlnf n(e) and it is important for a controlled
expansion that the small parameterl is not overwhelmed by
possible large terms inf n , such ase1/e or 1/em. This is care-
fully checked. Section VI provides our conclusions.

II. THE GOLDBERGER-WISE MECHANISM
IN PERTURBATION THEORY

A. The model

RS1 has a single extra dimension which is an interv
realized as an orbifold,S1/Z2. We will begin by using a
conventional angular coordinate,2p<f<p, for the S1,
where the orbifold symmetry acts byf→2f. We will al-
ways describe fields within the fundamental domain 0<f
<p. Their extension to generalf is then determined by the
orbifold symmetry and periodicity onS1.

The Goldberger-Wise mechanism will first be impl
mented within a theory given by

S5Sbulk1Sv is1Shid , ~2.1!
©2002 The American Physical Society03-1
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where

Sbulk5M3E d4xE
2p

p

dfAGS 2
1

4
R1

1

2
~Dx!2

13k22
1

2
ek2x2D ~2.2!

Sv is52M3kE d4xAgvS rv1lvx1
1

2
mvx2D

~2.3!

Shid52M3kE d4xAghS rh1lhx1
1

2
mhx2D ,

~2.4!

with

gmn
v ~x![Gmn~x,f5p!

gmn
h ~x![Gmn~x,f50!. ~2.5!

Note that we have chosen a normalization such thatx is
dimensionless. We assume that there are no extremely
hierarchies among the couplings of the model. However,
do take

k,M

ulv,hu,e,urv,hu;mv,h;1. ~2.6!

We will restrict our attention to classical solutions whic
admit a four-dimensional Poincare´ invariance. Such configu
rations satisfy the ansatz

ds25e2A(f)hmndxmdxn2r c
2df2

x5x~f!, ~2.7!

wherer c is the~constant in this ansatz! ‘‘radius.’’ In solving
the equations of motion it is convenient to work with a r
scaled dimensionless extra-dimensional coordinate,

y[krcf, ~2.8!

so that the infinitesimal distance in the extra dimension
dy/k. The Poincare ansatz then reads

ds25e2A(y)hmndxmdxn2dy2/k2

x5x~y!. ~2.9!

The equations of motion subject to this ansatz are

x914A8x82ex5~lv1mvx!d~y2yc!1~lh1mhx!d~y!
~2.10!

A91
2

3
~x8!252

2

3 S rv1lvx1
1

2
mvx2D d~y2yc!

2
2

3 S rh1lhx1
1

2
mhx2D d~y! ~2.11!
04400
ge
e

s

~A8!2512
1

6
ex21

1

6
~x8!2, ~2.12!

where

yc[krcp. ~2.13!

The brane-localized scalar tadpoles provide us with
formal small expansion parameters,lv,h;O(l). We expand
our solution as a perturbation series inl:

A5(
n

An

x5(
n

xn , ~2.14!

where the subscriptn denotes the term of orderln in the
series. Notice that at orderl0 we havex50 and the~trun-
cated! AdS5 gravity solution obtained in RS1,A052y, with
r c arbitrary. Thus, in fluctuations away from 4D Poinca´
invariance,r c becomes a ‘‘radion’’ modulus at zeroth orde
We will demonstrate the Goldberger-Wise mechanism
stabilizing the radius in higher orders of perturbation theo

The strategy for solving the equations of motion is
follows. We solve forA8 in terms ofx using Eq.~2.12!,

A852F12
1

6
ex21

1

6
~x8!2G1/2

, ~2.15!

and eliminateA8 from Eq. ~2.10! to obtain an equation
purely for x,

x924x8A12
1

6
ex21

1

6
~x8!22ex

5~lv1mvx!d~y2yc!1~lh1mhx!d~y!.

~2.16!

We will solve Eq.~2.16! to any desired order inl. We then
integrate Eq.~2.15! to solve forA(y), subject to the canoni-
cal gauge choiceA(0)50. Equation~2.11! will then be au-
tomatically solved away from the branes as a consequenc
5D general covariance.1 Finally, we satisfy the two brane
junction conditions of Eq.~2.11! by fine-tuning the hidden
brane tension parameterrh ~equivalent to fine-tuning the 4D
cosmological constant to zero!, and adjusting the compacti
fication radius,r c ~or equivalently,yc) to its stable vacuum
value.

B. Perturbation theory

Here, we will show self-consistently that the solution
the equations of motion satisfies

1One can easily check that up tod-function terms, Eqs.~2.10! and
~2.12! imply Eq. ~2.11!.
3-2
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yc;O~1/e!

A8~y!'21, ~2.17!

so that the weak-Planck hierarchy determined by the R
mechanism is set bye2O(1/e). Therefore, while we neede to
be somewhat small, we cannot work perturbatively ine. ~As
stated above we will be working strictly perturbatively inl.!
However, we will simplify our analysis by dropping sublea
ing terms ine2O(1/e). Note that whilel is formally small,
combinations such aslO(1/em) or lO(e11/e) may be large
whene!1. It is, therefore, crucial that such combinations
not appear in the perturbative series in order for the per
bative expansion to be under control. We show that this d
ger does not eventuate by a careful analysis.

1. Stabilization at second order

Since x vanishes at zeroth order, we can perturbativ
expand the square-root in Eq.~2.16!. At first order,

x1924x182ex15~lv1mvx1!d~y2yc!1~lh1mhx1!d~y!.

~2.18!

With orbifold boundary conditions the solution is

x15c1eD1(y2yc)1c2eD2y, ~2.19!

with

c1'
2lv

~2D11mv!
2

lh~2D21mv!eD2yc

~2D11mv!~2D22mh!
~2.20!

c2'
lh

~2D22mh!
, ~2.21!

and where

D6526A41e. ~2.22!

Note that for smalle,

D1'4, D2'2e/4. ~2.23!
te

or

04400
1

r-
n-

y

In the expressions for the coefficients we have neglected
leading powers ofe2D1yc, since we will demonstrate Eq
~2.17!.

At first order in l the scalar field does not stabilize th
radion becauseA receives no correction at this order. The
are still two fine tunings needed to satisfy the equations
motion as in the original version of RS1 without stabiliz
tion. It is only at second order, where the first order sca
profile back reacts on the metric, that the compactificat
radius is fixed. This back reaction was also discussed in R
@10#. At second orderx250 andA28 is given by Eq.~2.12!
expanded to second order inx. The junction conditions of
Eq. ~2.11! at this order read

S 211
1

12
ex1~0!22

1

12
x18~0!2D

52
1

3 S rh1lhx1~0!1
1

2
mhx1~0!2D ~2.24!

S 211
1

12
ex1~yc!

22
1

12
x18~yc!

2D
5

1

3 S rv1lvx1~yc!1
1

2
mvx1~yc!

2D . ~2.25!

Note that parametrically inl, the only way the visible
junction condition can be solved is if

drv[31rv;O~l2!. ~2.26!

Such a condition will not reappear at higher orders inl.
Once we grant thatrv is somewhere in thisO(l2)-sized
window about23, the visible junction condition can be sa
isfied, not by fine tuning of couplings, but by solving for th
stable vacuum value of the dynamical radius,

yc5
ln ~S!

D2
, ~2.27!

where
S5
D1~2D22mh!~2D2222mv!lv

~D12D2!„4D2D11mv~21mv!…lh

6

~mh22D2!~mv12D1!AF2drv„4D2D11mv~21mv!…1S 12D2D11
mv

2 Dlv
2G

~D12D2!„4D2D11mv~21mv!…lh
. ~2.28!
ared

c-
ed
The sign will depend on the actual value of the parame
with the requirement thatyc is real and positive. It follows
that in fluctuations away from 4D Poincare´ invariance, the
associated radion has acquired a mass-squared at this
rs

der

in l. For a large range of the parameters, this mass-squ
is positive. For example, ifmv,h dominate overD6 in Eq.
~2.16!, then in this limit the computation of the radion effe
tive potential at second order is precisely the one perform
3-3
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by Goldberger and Wise, with the identification of theirvv,h
with our 2lv,h /mv.h . A positive mass-squared resul
@4,11,10#.

The hidden junction condition aty50 gives us a fine-
tuning condition forrh

rh531
„2D2~221D2D1!1mh…lh

2

4~mh22D2!
. ~2.29!

This fine-tuning which we must do is equivalent to fin
tuning the effective four-dimensional cosmological const
to zero in order to permit solutions with 4D Poincare´ invari-
ance. We must perform such a fine-tuning order by orde
l.

Let us now check that our basic claims~2.17! are satisfied
at this order. For generic values of the couplings,

lnS;O~1!, ~2.30!

so by Eq.~2.23!, yc;O(1/e). Given the explicit form forx1
it is straightforward to see that the resultingA2 satisfies,
A8'21. We will show that these successes are maintai
at higher order inl.

2. Subdominance of higher orders

At higher ordern>2, after expanding the square-root
Eq. ~2.16!, we must solve the following equation forx:

xn924xn82exn2mvxnd~y2yc!2mhxnd~y!5Jn ,
~2.31!

whereJn has the form

Jn5( ar ,s, iWe
rx i 1

•••x i 2r
x i 2r 11

8 •••x i 2(s1r )11
8

3d i 11•••1 i 2(s1r )11 , n . ~2.32!

Here, the expansion coefficients,ar ,s, iW , are numbers of orde
one completely determined by expanding the square-roo
Eq. ~2.16!, and r 1s>1. Note thatJn is determined from
lower order solutions ofx in perturbation theory. This allows
us to treatJn as a known source in thenth order equation of
motion forx. Thus we can solve Eq.~2.31! iteratively for the
xn .

Our central claim is that to any order in perturbati
theoryx has the form

xn5( bnW ,r ,s,tl
n1~ly!n2~lyc!

n3~l/D2!n4erD1(y2yc)

3esD2yetD2yc, ~2.33!

where the constant coefficientsb are order one or smalle
~they can contain positive but not negative powers ofe), and
ni ,r ,s,t are integers such that

n1>1, r ,n2 ,n3 ,n4>0
04400
t

in

d

in

n5n11n21n31n4

usu,utu<n. ~2.34!

Let us discuss the significance of this claim. First, it sho
that the perturbative expansion is well-behaved. Note t
this isa priori not guaranteed. For example, the formal sm
parameterl could be overwhelmed by a factor ofe1/e or a
high enough power of 1/e. However, it is straightforward to
see that this is not so given Eq.~2.33!. Although y<yc
;O(1/D2);O(1/e), powers ofy,yc , and 1/D2 are accom-
panied by powers of the parametrically smallerl. While
positive powers ofeD1y.1 appear, they are compensated
powers ofe2D1yc. While arbitrary powers ofeD2y can ap-
pear, since we will show Eq.~2.17! self-consistently,eD2y

;O(1). Secondly, Eq.~2.17! also follows since it is clear
from Eq. ~2.33! that x is dominated byx1 for all y. There-
fore, the second order determination we made forA8 domi-
nates, and leads to a stable value ofyc near that of Eq.~2.27!.
The hidden brane junction condition also receives sublead
corrections which can be satisfied by fine-tuningrh order by
order inl. This is the higher-orders incarnation of the fou
dimensional cosmological constant fine-tuning problem
ensuring a 4D Poincare´ invariant vacuum solution.

We will now prove our claim~2.33! for xn by induction in
n. First we note that the claim is true forn51 based on our
explicit solution. For a general perturbative order,n, we as-
sume that the claim is true for all lower orders. Then clea
Jn , constructed from the lower order solution forx, also has
the form

Jn5( cnW ,r ,s,tl
n1~ly!n2~lyc!

n3~l/D2!n4erD1(y2yc)

3esD2yetD2yc, ~2.35!

where the constant coefficients,c, are also order one o
smaller. Given this source term we can solve Eq.~2.31!,

xn5E
0

yc
G~y,y8!Jn~y8!dy8, ~2.36!

whereG is the Green function satisfying

H d2

dy2
24

d

dy
2e2mvd~y2yc!2mhd~y!J G~y,y8!

5d~y2y8!, ~2.37!

subject to orbifold boundary conditions.
The detailed form of the Green function is straightfo

wardly worked out. However, in order to complete our i
duction we do not require the full details, but only the ge
eral form,
3-4



RANDALL-SUNDRUM SCENARIO, HIGHER . . . PHYSICAL REVIEW D 65 044003
G~y,y8!5H „O~1!e2D1y81O~1!eD2(yc2y8)2D1yc
…eD1y1„O~1!e2D1y81O~1!eD2(yc2y8)2D1yc

…eD2y, 0,y,y8,

„O~1!eD2(yc2y8)2D1yc1O~1!eD2yc2D1(y81yc)
…eD1y1„O~1!e2D2y81O~1!e2D1y8

…eD2y, y8,y,yc .

~2.38!
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The proof thatxn satisfies the claim of Eq.~2.33! then fol-
lows by inspection of all the possible terms that can ar
from Eq. ~2.36! given Eqs.~2.35! and ~2.38!. The basic in-
tegrals involved in evaluating Eq.~2.36! are of the form

E
y1

y2
dy8y8m5

y2
m112y1

m11

m11
, ~2.39!

or

E
y1

y2
dy8y8meDy85

dm

dDm S eDy22eDy1

D D , ~2.40!

wherem is a non-negative integer,D is some linear combi-
nation of D6 with integer coefficients, andy150,y; y2
5y,yc . It is straightforward but a little tedious to then che
that all possible terms arising in Eq.~2.36! do indeed satisfy
the claim of Eq.~2.33!.

3. The case oflÌe

We conclude this reworking of the Goldberger-Wi
mechanism by discussing the relationship betweenl ande.
Thus far, we have consideredl, our formal perturbative ex-
pansion parameter, to be formally smaller thane. The reason
for doing this is because of terms in Eq.~2.33! with non-zero
n2 ,n3 or n4, all of which would signify effects of order
(l/e)ni. The presence of such terms threatens to invalid
perturbation theory if we allowedl.e. However, we can in
fact prove a stronger result, that all such terms in Eq.~2.33!,
are in fact accompanied by a suppression factor of or
en21n31n4, so that we can take takel.e ~though formally
small compared to unity!. This relationship is indeed implici
in the original analysis of Goldberger and Wise. We have
emphasized this fact until now both for simplicity and b
cause the suppression factor is not generally true when
study higher derivative perturbations. We will study the sp
cial circumstances under which higher-derivative pertur
tions do not requirel/e to be small in Sec. V.

The stronger result, that there are accompanying fac
of orderen21n31n4, is again proven by induction onn, noting
first that it trivially holds forn51. For a largern, we assume
it holds for lower orders. Therefore,Jn shares the same prop
erty since it is made from products of~lower-order! x and
x8. But xn determined by Eq.~2.36! can generate~at most!
one new power ofy,yc or 1/D2 relative toJn : a new power
of y or yc can arise as in Eq.~2.39! or Eq.~2.40!, or one new
power of 1/D2 can arise as in Eq.~2.40! in caseD5D2 .
One can check~somewhat tediously! that such cases ca
only arise from terms inJn involving at least one power ofx
04400
e

te

er

t

e
-
-

rs

without a derivative acting on it@r .1 in Eq. ~2.32!#. Other-
wise, in terms where the integrals~2.39!, ~2.40! produce an
extra power ofy,yc or 1/D2 , the derivatives inx8 always
bring down a power ofD2;O(e) or eliminate a power ofy8
so that in factxn does satisfy the claim of the induction. Bu
for terms inJn with at least one non-derivative power ofx,
we see in Eq.~2.32! that there are explicit powers ofe aris-
ing in the expansion~2.32!. These compensate the sing
power of of O(1/e) that can be generated inxn , so the
induction claim still goes through.

III. SYMMETRIES OF INTERACTIONS

Our task now is to specify which higher-derivative inte
actions are allowed in generalizing RS1 and the Goldberg
Wise mechanism, in particular how they are constrained
symmetries. Since the spacetime manifold is topologica
R43S1/Z2, the relevant symmetries are 5D general coor
nate invariance and theZ2 parity symmetry. The coordinate
invariant or geometric statement of theZ2 symmetry is as
follows. We first start with the manifoldR43S1 and consider
two ‘‘3-branes’’ which divide theS1 into two disjoint re-
gions. We choose geometries and scalar fields onR43S1

such that the two regions are reflection symmetric. We n
wish to find a convenient description of all interactio
which respect this.

It is useful to start with a formalism which respects fu
5D general coordinate invariance onR43S1, even though
this necessarily involves coordinate systems which do
respect theZ2-symmetry of the invariant geometry.~How-
ever, see Ref.@12# for an alternative symmetry implementa
tion.! The two fixed-point branes~‘‘hidden’’ and ‘‘visible’’ !
will be coordinatized asYhid

M (x),Yv is
M (x), wherex are param-

eterizations of the 3-branes. Using these brane fields, a
metric, GMN(X), and 5D Goldberger-Wise scalarx(X), we
can form fully 5D general coordinate-invariant bulk an
brane actions onR43S1, as in Ref.@13#.

Once a generally coordinate invariant action has b
chosen in this way, we can ‘‘gauge-fix’’ by choosing our 5
coordinates,XM, to consist ofxm and an extra-dimensiona
angle,2p<f<p, such that

Yhid
m ~x![Yv is

m ~x![xm

Yhid
f [0

Yv is
f [p, ~3.1!

and where the symmetry of the geometry andx is manifest,
3-5
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Gmn~x,f!5Gmn~x,2f!

Gmf~x,f!52Gmf~x,2f!

Gff~x,f!5Gff~x,2f!

x~x,f!5x~x,2f!. ~3.2!

Our procedure for writing actions onR43S1/Z2 is there-
fore to ~a! write a general 5D coordinate invariant action f
bulk and brane fields onR43S1 as detailed in Ref.@13#, ~b!
gauge-fix the action according to Eqs.~3.1! and ~3.2!, using
the Z2-symmetry of the allowed configurations. Once this
done the brane-fieldsYhid

M (x),Yv is
M (x), no longer explicitly

appear. Finally,~c! one must check that all terms in the a
tion are compatible with orbifolding, namely they are inva
ant under

Gmn~x,f!→Gmn~x,2f!

Gmf~x,f!→2Gmf~x,2f!

Gff~x,f!→Gff~x,2f!

x~x,f!→x~x,2f!, ~3.3!

for general metrics and scalar field.
It is straightforward to check that it does not matt

whether one imposes theZ2-symmetry and gauge-fixing o
the action or varies the un-gauge-fixed action without imp
ing theZ2-symmetry, as long as one then imposes theZ2 and
gauge-fixing on the equations of motion. For convenience
will assume that theZ2-symmetry and gauge-fixing hav
been imposed at the level of the action, as implicit in the R
and Goldberger-Wise papers.

Recall that the central reason we wish to orbifold is th
we wish to take the visible brane to have ‘‘negative tensio
which would normally yield a ghost-like sign for the asso
atedYv is

f kinetic term~Ref. @13#!, causing a vacuum instabil
ity towards violent brane fluctuations. However, such bra
fluctuations violate theZ2-symmetry, and therefore ar
eliminated by orbifolding. It may seem that by formally r
introducingYv is

f in step~a! of our procedure for generatin
allowed action terms, we are reintroducing the instabil
However this is not so. TheZ2-symmetry rendersYv is

f as
pure gauge, with no physical import, as reflected in
gauge fixing of step~b!.

IV. HIGHER-DERIVATIVE OPERATORS IN EFFECTIVE
BRANE THEORIES

In any effective field theory we expect there to be high
derivative operators which are remnants of the more fun
mental physics which has been integrated out. Their inter
tation and treatment is generally well-understood. Howe
they pose special problems when they appear in effec
theories involving orbifolds and branes in extra dimensio
These stem from their appearance asd-function sources in
the extra dimension, rather than some structure with a fi
size~perhaps due to quantum-mechanical or stringy effec!.
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High derivatives applied to suchd-functions produce mess
and ill-defined equations of motion. We will show how su
problems can be treated by a combination of field redefi
tions and classical brane renormalization. See Ref.@14# for a
recent discussion of brane renormalization focusing on
dimension 2, and Refs.@15# for earlier work on classica
renormalization.

A. The formal derivative expansion

To keep only the essential considerations in focus we w
not consider gravity here. We will limit ourselves to a sing
scalar field,x, living on an extra-dimensionalS1/Z2 of fixed
radiusr c ~and the usual four dimensions!. The same consid-
erations apply in the presence of gravity or non-trivial wa
factor. As before we takex to be dimensionless and eve
under the orbifold parity. The general Lagrangian then h
the form

L5M3H K~x!

2
~]Mx!22V~x!2v i~x!d~y2yi !

1 (
n.0

1

Mn
Lh.d.

(n) ~x,]M !J , ~4.1!

whereM is the only explicit scale appearing in order to ba
ance dimensions, andy is now defined as the extra
dimensional coordinate corresponding to proper distanc
the extra dimension. Brane localized terms are represe
by multiplying by one ofd(y2yi), wherey150,y25pr c .
Lh.d. are arbitrary higher-derivative terms organized in po
ers of 1/M . Note that derivatives always appear in even nu
bers due to the orbifold parity and 4D Lorentz invariance,
that the 1/M -suppressed terms~once the overallM3 is ex-
cluded! are those with more than two derivatives in the bu
and those with any deriviatves on a brane. We have not s
rated out brane and bulk higher-derivative terms although
will do this later.

We will study the equations of motion subject to the 4
Poincare´ ansatz,x5x(y),

2]y„K~x!]yx…2
K8~x!

2
~]yx!21V8~x!1v i8~x!d~y2yi !

5 (
n.0

1

Mn

dSh.d.
(n)

dx
. ~4.2!

This would appear to be a differential equation of arbitrar
high order and therefore requiring an arbitrary number
initial conditions to solve. However, there is a unique so
tion which is perturbatively close, in a (]/M )m expansion, to
the zeroth order solution,

2]y„K~x0!]yx0…2
K8~x0!

2
~]yx0!21V8~x0!

1v i8~x0!d~y2yi !50. ~4.3!
3-6
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This zeroth order equation is manifestly a second order
ferential equation subject to orbifold boundary condition
which we know has a distinct solution. Of course, in order
determinex0 we may have to approximate as we did for t
Goldberger-Wise mechanism, perturbing inl, but in order to
focus on higher derivative perturbations let us take the ze
order solution,x0, as given.

An expansion in]y /M may seem sensible in the bu
where solutions are smooth but ill-defined in the presenc
the braned-functions. We will show how these ill-define
brane singularities can be renormalized away. To get sta
and to understand the issues we will proceed bravely
formally define the]y /M perturbation expansion.2 We will
work inductively inn. Let the expansion ofx in powers of
1/M be written

x5(
m

xm . ~4.4!

Suppose that we can solve Eq.~4.2! to order 1/Mm ~we know
we can do this form50). We will then show how to con-
struct a solution up to order 1/Mm11.

We substitute Eq.~4.4! into Eq. ~4.2! and focus on the
term precisely of order 1/Mm11,

H 2]yK~x0!]y2]y~]yx0!K8~x0!1
1

2
K9~x0!~]yx0!2

1K8~x0!~]yx0!]y1V9~x0!1v i9~x0!d~y2yi !J xm11

5
dS

dx F (
l<m

x l~y!G um11 , ~4.5!

where the right-hand side is the functional derivative of
entireaction, including the higher derivative terms, evalua
for the field ( l<mx l(y), but keeping precisely the terms o
order 1/Mm11. Thus, in order to perturbatively improve ou
solution by one order in 1/M , that is solve forxm11 in terms
of x l<m , we only need to solve the above linear seco
order equation forxm11 subject to orbifold boundary condi
tions, with a source term determined by the lower order
lution x l<m . This we can do

xm11~y!5E dy8G~y,y8!
dS

dx F (
l<m

x l~y8!G um11 , ~4.6!

where G is the Green function determined by orbifo
boundary conditions satisfying

2This is in the same spirit as setting up the formal Feynman
gram series in quantum field theory, which is also ill-defined u
after regularization and renormalization.
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H 2]yK~x0!]y2]y~]yx0!K8~x0!1
1

2
K9~x0!~]yx0!2

1K8~x0!~]yx0!]y1V9~x0!

1v i9~x0!d~y2yi !J G~y,y8!5d~y2y8!. ~4.7!

B. The problem

Such Green functions,G ~and alsox0! will clearly be
smooth in the bulk, with absolute-value type kinks at t
branes. That is, their first derivatives will have step-functi
discontinuities on the branes and their second derivat
will have d-functions on the branes. Let us suppose t
property of the Green function is shared byx l<m(y) and see
how trouble can arise inxm11. First, consider bulk terms tha
can appear in (dS/dx)@( l<mx l(y8)# um11

. If there are more
than two derivatives acting on the same field, then we w
have derivatives ofd-functions on the branes which we mu
convolute withG, which has absolute-value type kinks. Th
result is therefore ill defined. Similarly, if we have a pow
greater than one of second derivatives of fields we will ha
to integrate products ofd-functions which is again ill de-
fined. On the other hand, if there is at most a single field w
two derivatives acting on it, multiplied by any number
fields with at most first derivatives, then we will only have
integrate a singled-function multiplied by a function with
absolute-value type kinks.3 This does yield a well-defined
xm11, which is also smooth except for absolute-value ty
kinks on the branes. It is rather straightforward to see that
troublesome higher-derivative bulk terms in the equations
motion correspond precisely to bulk higher-derivative ter
in the Lagrangian, Eq.~4.1!, with more than one derivative
acting on a field~unless it can be eliminated by integratio
by parts!.

Let us now turn to brane terms on the right-hand side
Eq. ~4.6!, again assuming thatx l<m(y) has only absolute-
value type kinks and considering the effects onxm11(y).
It is clear that if in the Lagrangian, Eq.~4.1!, there
are any derivatives in brane terms, then
(dS/dx)@( l<mx l(y8)# um11

we will have derivatives ofd
functions which makes Eq.~4.6! ill-defined again. On the
other hand if there are no derivatives on the brane terms,
will give simple d-functions to be integrated in Eq.~4.6!,
resulting in axm11 with only absolute-value type kinks.

Below, we will show that an arbitrary higher-derivativ
Lagrangian, Eq.~4.1!, can be massaged so that all bulk term
have at most one]y acting on any given field, e.g.x8(]x)10,
and all brane terms have no]y’s at all. As shown above, this
will result in a well-defined perturbative derivative expa
sion for solving the equations of motion, with solutions ha
ing at most absolute-value type kinks. The reader may o

-
l

3The first derivatives of fields actually have step-function disco
tinuities, but because of the orbifold symmetries they must alw
appear in even powers, yielding a function with only absolute-va
type kinks on the branes.
3-7
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ADAM LEWANDOWSKI AND RAMAN SUNDRUM PHYSICAL REVIEW D 65 044003
first reading wish to accept that this can be done, skip the
of this section, and continue with the stability analysis
higher-derivative bulk terms subject to the above conditio

C. Bulk higher-derivative operators

In this section we will show how higher-derivative oper
tors in the bulk can be massaged using field redefinitions
simplify the considerations note that the equations of mot
subject to the 4D Poincare´ ansatz,x5x(y), can always be
obtained by first imposing the ansatz on the action, Eq.~4.1!,
and then functionally differentiating with respect tox(y).
Doing this we can write the bulk part of the Lagrangian
the form

Lbulk5M3H 2
1

2
K~x!~]yx!22V~x!

1(
nW

anW~x!

M unu ~]x!n1 . . . ~]Nx!nNJ , ~4.8!

where unu[n112n2•••1NnN22.0, and where now]
[]y .

As already discussed, the problematic terms are th
with N.1 To begin, we assign the bulk potential a form
strength V;O(k2),M2 and augment our effective fiel
theory derivative expansion with an expansion ink/M . We
then make a field redefinition,c(f), to render the kinetic
term ‘‘canonical,’’

c[E dxK1/2~x!. ~4.9!

Then we have a form

Lbulk5r cM
3H 1

2
~]c!22V~c!

1(
nW

anW~c!

M unu ~]c!n1 . . . ~]Nc!nNJ , ~4.10!

where of courseV andan are redefined too. This particula
field redefinition will simplify stating our procedure, and wi
be undone at the end.

We begin by working to zeroth order ink/M ~that is, we
can neglectV), but to some non-zero order,m, in ]/M .
Working inductively, we assume that by some field redefi
tions of c all N.1 terms have been eliminated from a
terms of lower thanm-th order. We then make the followin
field redefinition:

c→c1 (
unu5m

~2]!N22
anW~c!

M unu ~]c!n1 . . . ~]Nc!nN21.

~4.11!

Note that this transformation is only sensible forN.1.
To m-th order, the only difference this makes to th
Lagrangian arises from substituting into the zeroth or
04400
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kinetic term, whereupon ~after integrating by parts!
it produces precisely the term needed to can
( unu5m@anW /(c)M unu#(]c)n1 . . . (]Nc)nN in the Lagrangian,
plus terms of higher thanm-th order. Thus one uses thi
procedure to eliminateN.1 terms to any desired order i
]/M , when we neglectO(k2).

More generally, the field transformation above will, how
ever, reintroduce terms of various orders in]/M , but now
with coefficients of orderk2/M2. But we can once again do
a field redefinition at orderk2/M2 and work to any desired
order in ]/M to eliminate N.1 terms. This will in turn
induce terms of orderk4/M4. In this way, one can eliminate
all N.1 terms to any fixed order ink2/M2 and]/M . Finally,
we can transform back to a field,xnew,

]cnew

]xnew
5K1/2~xnew!, ~4.12!

in terms of which

Lbulk5r cM
3H 1

2
K~xnew!~]xnew!22V~xnew!

1(
n

an~xnew!

Mn22
~]xnew!nJ . ~4.13!

We have thereby removed all the problematic bulk ter
discussed in the previous subsection.

It can be shown~again, tediously! that our field redefini-
tion in Poincare´ ansatz,

x~y!→xnew~y!, ~4.14!

can be lifted to a fully 5D covariant transformation,

x~x,y!→xnew~x,y!, ~4.15!

which, however, reduces tox(y)→xnew(y) upon imposing
the 4D Poincare´ ansatz. Similarly, when gravity is include
there are fully 5D generally covariant field redefinition
which upon imposing the Poincare´ ansatz ensure that allN
.1 terms~terms with more than one]y acting on a field! are
absent.

D. Brane higher-derivative operators

It is obvious that the field transformations which we d
cussed above to massage the bulk action will induce der
tive terms on the orbifold fixed points. Furthermore, su
derivative terms may already be present anyway. There
after ensuring that all bulk terms satisfyN<1, we must still
massage away brane terms in the Lagrangian of the form

Lbrane5E dyd~y2yi !M
3k

3H (
nW :N.0

anW~x!

M unu ~]x!n1 . . . ~]Nx!nNJ .

~4.16!
3-8
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RANDALL-SUNDRUM SCENARIO, HIGHER . . . PHYSICAL REVIEW D 65 044003
We will show that the important physics contained inx away
from the branes can be obtained by using effective renorm
ized brane Lagrangians without any extra-dimensional
rivatives,

Le f f. brane5E dyd~y2yi !M
3kv i~x!. ~4.17!

The first step before renormalizing the original Lagran
ian is to regulate it, say by the replacement,

d~y2yi !→D~y2yi !

[Ne21/(y2yi1t)e1/(y2yi2t), 2t,y,t

0 else, ~4.18!

where

N215E
2t

t

dye21/(y1t)e1/(y2t). ~4.19!

This replaces the infinitesimally thin brane by a thick bra
of thicknesst:1/M,t!r c . Note that the brane profileD(y
2yi) is a smooth function~that is, aC` function! of com-
pact support.

With this regulator in place, clearly our perturbative d
rivative expansion is always well-defined despite derivati
on branes, and Eq.~4.6! will always give smooth solutions
Of course, the results depend on our choice of regula
However we will show that away from the~compact! core of
the branes, this regulator-dependence can be completely
sumed into an effective brane Lagrangian, Eq.~4.17!.

For simplicity of exposition we will consider a single o
bifold fixed point onR/Z2 rather than the two fixed points o
S1/Z2. The generalization toS1/Z2 is entirely straightfor-
ward. First, recall that we have shown that at every orde
perturbation theory we only solve second order differen
equations. Thus the solutionx(y) in perturbation theory is
completely specified byx(0) and ]yx(0). Orbifold parity
sets]yx(0)50, butx(0) ~on R/Z2 not S1/Z2) is an unfixed
number,x(0)5c. In particular by solving the equations o
motion, x(t)5x(2t) and ]yx(t)52]yx(2t) are both
functions ofc,

x~ t !5 f ~c!

]yx~ t !5g~c!. ~4.20!

Let us definex̃(y), to be the result of integrating the secon
order differential equations fromt to a generaly.0, using
x(t),]yx(t) as boundary conditions, but completely negle
ing brane interactions. Now fory.t, x̃(y) is in fact the
correct solutionx(y), since the neglected brane interactio
vanish in this region. But fory,t, clearly x̃(y) cannot be
trusted. Nevertheless, as long as the physics of intere
dominated by bulk field behavior outside the core of t
brane, we can usex̃(y). This will be the case for the solutio
to the hierarchy problem, which is determined by the wa
factor accumulated over the large bulk (r c@1/M ).
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Let us define

x̃~01!5F„x~ t !,]yx~ t !…

]yx̃~01!5G„x~ t !,]yx~ t !…. ~4.21!

We can eliminate dependence onx(t),]yx(t) in favor of c,

x̃~01!5F„f ~c!,g~c!…[p~c!

]yx̃~01!5G„f ~c!,g~c!…[q~c!. ~4.22!

Therefore, order by order in perturbation theory we c
eliminate dependence onc by invertingp,

]yx̃~01!5q„p21@ x̃~01!#…. ~4.23!

We will now show thatx̃ is the classical solution corre
sponding to a ‘‘renormalized’’ effective Lagrangian with th
same bulk terms as before, but with ad-function brane-
localized potential term ~that is without any extra-
dimensional derivatives!. Recall that by field redefinitions
we have already ensured that the bulk Lagrangian only
pends onx and its first derivative,Lbulk(x,x8). The full
effective Lagrangian, including the effective brane potent
is then given by

Le f f5Lbulk~x,x8!1d~y!ve f f~x!, ~4.24!

where

ve f f~x!5E dx 2q„p21~x!…
]2Lbulk

~]x8!2
@x,q„p21~x!…#.

~4.25!

The reader can straightforwardly check that the equation
motion that follows from this effective Lagrangian is equiv
lent to the equation of motion due only to the bulk term
away fromy50, supplemented by the boundary conditio
Eq. ~4.23!.

Thus, we are always able to find an effective Lagrang
of the form ~4.24!, which has solutions which agree wit
those of a general Lagrangian supplemented by a regul
outside the regulated core of the branes. The important p
ics such as the hierarchy are insensitive to the general
agreement inside the thickness of the regulated brane. N
that the effective Lagrangian does not suffer from UV am
guities, and therefore needs no regulator. In that sense
‘‘renormalized.’’

V. STABILITY AND HIGHER DERIVATIVE OPERATORS

A. Setup of the model

We will now show that the Goldberger-Wise mechanis
can be realized in a very general setting, including high
derivative operators. We will take the higher-derivative ter
to be suppressed by appropriate powers of 1/M and con-
strained by symmetries according to the discussion of S
III. Furthermore, we will assume that they have already be
massaged by field redefinitions and brane-renormalizatio
3-9
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discussed in the previous section, so that fields appearin
bulk interactions have at most one extra-dimensional der
tive acting on them, while there are no extra-dimensio
derivatives in brane terms.

The action in Einstein frame is

Sbulk5M3E d4xE
2p

p

dfAGS k2V~x!2
1

4
R1

1

2
K~x!~Dx!2

1M2Lh.d.S GMN ,x,
]N

M D D ~5.1!

Sv is52M3kE d4xAgv isvv~x! ~5.2!

Shid52M3kE d4xAghidvh~x!. ~5.3!

Here,Lh.d. indicates terms containing more than two deriv
tives with dimensionless coefficients of order unity and s
pressed by powers of 1/M . We can expand the dimensionle
functionsV,K,vv , andvh in powers ofx

V~x!532
1

2
ex21O~x3!

K~x!511O~x!

vv~x!5rv1lvx1
1

2
mvx21O~x3!

vh~x!5rh1lhx1
1

2
mhx21O~x3!. ~5.4!

We will perform perturbation theory in powers ofk2/M2

!1 and the brane-tadpoles,lv,h , as discussed in Sec. I
Higher-derivative terms are automatically suppressed
powers ofk2/M2 because the bulk potential is dominated
a 5D cosmological constant of orderM3k2. Formally, this is
seen by the fact that in our dimensionlessy-coordinate every
]y is accompanied byk. For simplicity, we takek2/M2 and
lv,h to all be of the order of our formal small parameter,l.
We continue to take the relations of Eq.~2.6! to hold among
lv,h ,rv,h ,mv,h ande.

We now write the equations of motion with the Poinca´
ansatz using again the dimensionless variabley5krcf as in
Sec. II,

x914A8x82ex5„lv1mvx1O~x2!…d~y2yc!

1„lh1mhx1O~x2!…d~y!

1 f 1~x,x8,A8!1x9 f 2~x,x8,A8!

~5.5!
04400
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A91
2

3
~x8!252

2

3 S rv1lvx1
1

2
mvx21O~x3! D

3d~y2yc!2
2

3 S rh1lhx1
1

2
mhx2

1O~x3! D d~y!1 f 3~x,x8,A8!

1A9 f 4~x,x8,A8! ~5.6!

~A8!2512
1

6
ex21

1

6
~x8!21 f 5~x,x8,A8!,

~5.7!

where the f i refer to the variation of the bulk higher
derivative action subject to the special form discussed in S
IV. Note that the right-hand side of Eq.~5.7! does not contain
terms with delta functions or second derivatives.

Perturbation theory follows along lines similar to Sec.
We first formally expandA andx as in Eq.~2.14! and sub-
stitute into the equations of motion. We then solve Eq.~5.7!
for the An8 in terms of thexm,n and xm,n8 to any desired
order. Substituting for theAn8 into Eq. ~5.5! then yields an
equation involving only thexn andxn8 which we solve per-
turbatively. Then, by 5D general covariance in the bulk, E
~5.6! is automatically solved, except for the two brane jun
tion conditions which are solved by fine-tuningrh and set-
ting yc to its stable vacuum value.

To see that Eq.~5.6! is automatically satisfied up to junc
tion conditions, note that under infinitesimal general coor
nate transformations the bulk action is invariant,

Sbulk@GMN1DMhN1DNhM ,x1]MxhM#5Sbulk@GMN ,x#,

~5.8!

for arbitrary infinitesimalhM . This implies

2DMS 1

AG

dSbulk

dGMN
D 2

1

AG

dSbulk

dx
]Nx50. ~5.9!

In the Poincare´ ansatz this gives

]5S dSbulk

dG55
D5A8

dSbulk

dGm
m

2
1

2
x8

dSbulk

dx
. ~5.10!

This shows that Eq.~5.6!, the Gmn equation of motion, is
satisfied up to junction conditions, given Eq.~5.5!, the x
equation of motion, and Eq.~5.7!, the G55 equation of mo-
tion.

The equation forx obtained by eliminatingA8 from Eq.
~5.5! using Eq. ~5.7! has the form~2.31!, but now with
sources following from Eqs.~5.5!–~5.7! of the form:

Jn5Jn
bulk1Jn

brane1Jn
mixed, ~5.11!

where
3-10
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Jn
bulk5( ar ,s, iWl

mx i 1
. . . x i r

x i r 11
8 . . . x i s

8 d i 11•••1 i s1m, n

~5.12!

Jn
branej5( br ,s, iWl

mx i 1
. . . x i s

d i 11••• i s1m,nd~y2yj !,

~5.13!

and

Jn
mixed5( cr ,s, iWl

mx i 1
. . . x i s

x i r 11
8 . . . x i s

8 xp9

3d i 11••• i s1m1p, n . ~5.14!

This last term acts as a brane term as well as a bulk t
becausex9 containsd-functions at the branes as well as
smooth bulk behavior. Again, the constant coefficients,a,b
and c are order one or smaller. Thenth order solution is
obtained using Eq.~2.36! with the same Green function de
fined by Eq.~2.37!.

B. Stabilization at second order

We will show here that hierarchy stabilization satisfyin
Eq. ~2.17! is naturally achieved by second order inl, simi-
larly to Sec. II. Note that at zeroth order our solution is ag
the unstabilized RS1 solution. At first orderx1 is given again
by Eq. ~2.19!, althoughA18 may now be a non-zero constan
As discussed above, we can solve for theAn8 using Eq.~5.7!
in terms of thexm,n and xm,n8 . Therefore,A28 must be a
quadratic polynomial inx1 andx18 . Summarizing, we have

A081A181A285a01a1x11a2x181
1

12
ex1

22
1

12
x18

2 ,

~5.15!

where a05211O(l), a1,2;O(l). The constantsa i are
independent ofyc since theAn8 are determined in terms of th
xm andxm8 locally.

It remains to satisfy the junction conditions for Eq.~5.6!.
After anO(l2) tuning ofrv ~not appearing at higher orders!,
similar to Sec. II, the above considerations and Eq.~2.19!
yield a visible junction condition of the form

P2~eD2yc!50, ~5.16!

where P2 is a quadratic polynomial with order one coef
cients. For generic values of these coefficients one obt
solutions,

eD2yc5O~1!. ~5.17!

Thus, along with Eq.~5.15! we have demonstrated the hie
archy, Eq.~2.17!, at this order. The hidden brane junctio
condition is solved by fine-tuningrh , corresponding to the
fine-tuning of the 4D cosmological constant to zero.
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C. Subdominance of higher orders

We claim that at any orderxn has the general form~2.33!,
andAn8 has the general form

An85( qnW ,r ,s,tl
n1~ly!n2~lyc!

n3~l/D2!n4

3erD1(y2yc)esD2yetD2yc, ~5.18!

so that perturbation theory is well-behaved. Therefore,
second order mechanism above for stabilization of the w
or Planck hierarchy of ordere2O(1)/e continues to hold.

We show this claim is true by induction. We have alrea
discussed the cases forn50,1. Focusing now onxn and
assuming that Eq.~2.33! is valid at all orders lower thann,
the nth order source has the form

Jn5( anW ,r ,s,tl
n1~ly!n2~lyc!

n3~l/D2!n4erD1(y2yc)

esD2yetD2yc1( bnW ,r ,s,tl
n1~ly!n2~lyc!

n3~l/D2!n4

3e2rD1ycetD2ycd~y!

1( cnW ,r ,s,tl
n1~ly!n2~lyc!

n3~l/D2!n4

3e2rD1ycetD2ycd~y2yc!. ~5.19!

It is straightforward to check that with this source, the so
tion for xn given by Eq.~2.36! indeed satisfies Eq.~2.33!.
Then, given the form of Eq.~5.7! and the form forxn of Eqs.
~2.33!, ~5.18! readily follows.

D. The case oflÌe

A significant difference between the source considered
this section, Eq.~5.11! and that considered in Sec. II, Eq
~2.32!, is that in the latter every power ofx without a de-
rivative was accompanied by an explicit power ofAe. Recall
that this ensured that increasing powers of 1/D2 in perturba-
tion theory were accompanied bye factors. This allowed us
to takel.e and still have a meaningful perturbative expa
sion. Without this feature, in this section we are limited
formally l,e, as we have assumed thus far in this secti
in order to have a good expansion.

However, there is an interesting scenario under which
would recover a good expansion forl.e even for higher-
derivative operators. We first assume a~non-linearly real-
ized! global symmetry,4

x→x1const. ~5.20!

If this symmetry were exact, only derivatives ofx would be
permitted in the action. But one does not expect that s
global symmetries are respected by the underlying quan

4We thank W. Goldberger for pointing out the usefulness of t
symmetry to us.
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gravity theory. We will assume that in fact such violation
controlled by the small parameter,e, so that non-derivative
powers ofx in the action are accompanied byAe, thereby
generalizing the explicit appearance ofe in Sec. II. Then,
increasing powers of 1/D2 in perturbation theory are agai
accompanied bye factors, so that the perturbative expansi
is under control forl.e.

VI. CONCLUSIONS

We demonstrated the stability of the RS mechanism
generating the weak-Planck hierarchy in the presence
higher-derivative interactions. We re-worked the Goldberg
Wise radius stabilization mechanism in a systematic per
bative expansion in parameters of the brane potential. In
porating higher-derivative interactions as furth
perturbations, we showed that they did not affect the ba
mechanism.

In our perturbative analysis, radius stabilization
achieved in the following steps. At zeroth order we found
unstabilized RS1 vacuum with a trivial profile for th
Goldberger-Wise scalar. At first order, the scalar respo
non-trivially to the brane-potentials. The back-reaction
this scalar profile on the 5D metric~warp factor! takes place
at second order. In particular, the radius acquires a disti
stable value. This value can naturally be several times
fundamental scale of the theory, while the bulk geometry
small perturbation of AdS5, so that the RS mechanism fo
generating the hierarchy operates. We also gave a ca
treatment of all higher orders in perturbation theory, show
that our expansion is under good control.

The derivative expansion of effective field theory see
at first fundamentally at odds with the presence of ‘‘thin’’
B
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w
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se
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d-function branes or orbifold fixed points, resulting in il
defined singularities in the classical equations of moti
While such singularities can be regulated, the proces
messy and apparently regulator-dependent. However,
showed how classical renormalization of the brane action
be implemented so as to remove the need for explicit re
lators. This greatly simplifies the discussion of highe
derivative effects.

It is important to study the stability of the RS1 effectiv
field theory under quantum effects. Since the effective the
is not renormalizable we expect quantum divergences of
form of every possible local operator~subject only to sym-
metries!. However, once these divergences are covaria
regulated at the fundamental scale, they must be of the f
and strength of the higher-derivative interactions alrea
considered in this paper. As usual in effective field theo
renormalization proceeds order by order in the derivative
pansion, using counterterms also of the form of the opera
of this paper. Thus, because quantum divergences are
they cannot destabilize the RS hierarchy, since our pu
classical analysis already treats all such local effects. T
leaves only the non-local quantum effects which are U
finite and therefore well-defined and calculable. In futu
work, we hope to build on Refs.@6# in studying the genera
structure of these non-local quantum amplitudes and whe
they affect the basic RS1 mechanism.
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